Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Microbiol ; 13: 856913, 2022.
Article in English | MEDLINE | ID: covidwho-2032801

ABSTRACT

The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a serious pandemic has altered the global socioeconomic dynamics. The wide prevalence, high death counts, and rapid emergence of new variants urge for the establishment of research infrastructure to facilitate the rapid development of efficient therapeutic modalities and preventive measures. In agreement with this, SARS-CoV-2 strains were isolated from patient swab samples collected during the first COVID-19 wave in Odisha, India. The viral isolates were adapted to in vitro cultures and further characterized to identify strain-specific variations in viral growth characteristics. The neutralization susceptibility of viral isolates to vaccine-induced antibodies was determined using sera from individuals vaccinated in the Government-run vaccine drive in India. The major goal was to isolate and adapt SARS-CoV-2 viruses in cell culture with minimum modifications to facilitate research activities involved in the understanding of the molecular virology, host-virus interactions, drug discovery, and animal challenge models that eventually contribute toward the development of reliable therapeutics.

2.
J Appl Microbiol ; 133(4): 2668-2677, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1956751

ABSTRACT

AIMS: The RT-PCR is the most popular confirmatory test for SARS-CoV-2. It is sensitive, but high instrumentation cost makes it difficult for use outside routine clinical setup. This has necessitated the development of alternative methods such as CRISPR-based DETECTR method which uses lateral flow technology. Although accurate and sensitive, this method is limited by complex steps and recurrent cost of high-quality lateral flow strips. The main goal of this study was to improve the Cas12a-based SARS-CoV-2 DETECTR method and develop a portable and field-deployable system to reduce the recurring consumable cost. METHODS AND RESULTS: Specific regions of N and E genes from SARS-CoV-2 virus and human RNase P (internal control) were reverse transcribed (RT) and amplified by loop-mediated isothermal amplification (LAMP). The amplified products were detected by a Cas12a-based trans-cleavage reaction that generated a fluorescent signal which could be easily visualized by naked eye. Detection of internal control, RNase P gene was improved and optimized by redesigning RT-LAMP primers. A number of steps were reduced by combining the reagents related to the detection of Cas12a trans-cleavage reaction into a single ready-to-use mix. A portable, cost-effective battery-operated instrument, CRISPR-CUBE was developed to run the assay and visualize the outcome. The method and instrument were validated using both contrived and patient samples. CONCLUSIONS: The simplified CRISPR-based SARS-CoV-2 detection and instrument developed in this study, along with improved design for internal control detection allows for easier, more definitive viral detection requiring only reagents, consumables and the battery operable CRISPR-CUBE. SIGNIFICANCE AND IMPACT OF STUDY: Significant improvement in Cas12 method, coupled with simple visualization of end point makes the method and instrument deployable at the point-of-care (POC) for SARS-CoV-2 detection, without any recurrent cost for the lateral flow strips which is used in other POC methods.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , CRISPR-Cas Systems , Humans , Nucleic Acid Amplification Techniques/methods , Ribonuclease P/genetics , SARS-CoV-2/genetics
3.
Front Cell Infect Microbiol ; 11: 725035, 2021.
Article in English | MEDLINE | ID: covidwho-1924071

ABSTRACT

Purpose: The current global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), led to the investigation with clinical, biochemical, immunological, and genomic characterization from patients to understand the pathophysiology of viral infection. Methods: Samples were collected from six asymptomatic and six symptomatic SARS-CoV-2-confirmed hospitalized patients in Bhubaneswar, Odisha, India. Clinical details, biochemical parameters, and treatment regimen were collected from a hospital; viral load was determined by RT-PCR; and the levels of cytokines and circulating antibodies in plasma were assessed by Bio-Plex and isotyping, respectively. In addition, whole-genome sequencing of viral strains and mutational analysis were carried out. Results: Analysis of the biochemical parameters highlighted the increased levels of C-reactive protein (CRP), lactate dehydrogenase (LDH), serum SGPT, serum SGOT, and ferritin in symptomatic patients. Symptomatic patients were mostly with one or more comorbidities, especially type 2 diabetes (66.6%). The virological estimation revealed that there was no significant difference in viral load of oropharyngeal (OP) samples between the two groups. On the other hand, viral load was higher in plasma and serum samples of symptomatic patients, and they develop sufficient amounts of antibodies (IgG, IgM, and IgA). The levels of seven cytokines (IL-6, IL-1α, IP-10, IL-8, IL-10, IFN-α2, IL-15) were found to be highly elevated in symptomatic patients, while three cytokines (soluble CD40L, GRO, and MDC) were remarkably higher in asymptomatic patients. The whole-genome sequence analysis revealed that the current isolates were clustered with 19B, 20A, and 20B clades; however, 11 additional changes in Orf1ab, spike, Orf3a, Orf8, and nucleocapsid proteins were acquired. The D614G mutation in spike protein is linked with higher virus replication efficiency and severe SARS-CoV-2 infection as three patients had higher viral load, and among them, two patients with this mutation passed away. Conclusions: This is the first comprehensive study of SARS-CoV-2 patients from India. This will contribute to a better understanding of the pathophysiology of SARS-CoV-2 infection and thereby advance the implementation of effective disease control strategies.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Genomics , Humans , Pandemics , SARS-CoV-2
4.
Mol Omics ; 18(6): 490-505, 2022 07 11.
Article in English | MEDLINE | ID: covidwho-1830193

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major global health concern. This virus infects the upper respiratory tract and causes pneumonia-like symptoms. So far, few studies have shown alterations in nasopharyngeal (NP) microbial diversity, enrichment of opportunistic pathogens and their role in co-infections during respiratory infections. Therefore, we hypothesized that microbial diversity changes, with increase in the population of opportunistic pathogens, during SARS-CoV2 infection in the nasopharynx, which may be involved in co-infection in COVID-19 patients. The 16S rRNA variable regions, V1-V9, of NP samples of control and COVID-19 (symptomatic and asymptomatic) patients were sequenced using the Oxford Nanopore™ technology. Comprehensive bioinformatics analysis for determining alpha/beta diversities, non-metric multidimensional scaling, correlation studies, canonical correspondence analysis, linear discriminate analysis, and dysbiosis index were used to analyze the control and COVID-19-specific NP microbiomes. We observed significant dysbiosis in the COVID-19 NP microbiome with an increase in the abundance of opportunistic pathogens at genus and species levels in asymptomatic/symptomatic patients. The significant abundance of Mycobacteria spp. and Mycoplasma spp. in symptomatic patients suggests their association and role in co-infections in COVID-19 patients. Furthermore, we found strong correlation of enrichment of Mycobacteria and Mycoplasma with the occurrences of chest pain and fever in symptomatic COVID-19 patients. This is the first study from India to show the abundance of Mycobacteria and Mycoplasma opportunistic pathogens in non-hospitalized COVID-19 patients and their relationship with symptoms, indicating the possibility of co-infections.


Subject(s)
COVID-19 , Coinfection , Mycobacterium , Mycoplasma , Coinfection/epidemiology , Dysbiosis , Humans , Nasopharynx , RNA, Ribosomal, 16S/genetics , RNA, Viral , SARS-CoV-2
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.13.472526

ABSTRACT

Emergence of SARS-CoV-2 as a serious pandemic has altered the global socioeconomic dynamics. The wide prevalence, high death counts and rapid emergence of new variants urge for establishment of research infrastructure to facilitate rapid development of efficient therapeutic modalities and preventive measures. In agreement with this, five SARS-CoV2 strains (ILS01, ILS02, ILS03, ILS15 and ILS24) of four different clades (19A, 19B, 20A and 20B) were isolated from patient swab samples collected during the 1st COVID-19 wave in Odisha, India. The viral isolates were adapted to in-vitro cultures and further characterized to identify strain specific variations in viral growth characteristics. All the five isolates showed substantial amount of virus induced CPE however ILS03 belonging to 20A clade displayed highest level of CPE. Time kinetics experiment revealed spike protein expression was evident after 16th hours post infection in all five isolates. ILS03 induced around 90% of cytotoxicity. Further, the susceptibility of various cell lines (human hepatoma cell line (Huh-7), CaCo2 cell line, HEK-293T cells, Vero, Vero-E6, BHK-21, THP-1 cell line and RAW 264.7 cells) were assessed. Surprisingly, it was found that the human monocyte cells THP-1 and murine macrophage cell line RAW 264.7 were permissive to all the SARS-CoV-2 isolates. The neutralization susceptibility of viral isolates to vaccine-induced antibodies was determined using sera from individuals vaccinated in the Government run vaccine drive in India. The micro-neutralization assay suggested that both Covaxin and Covishield vaccines were equally effective (100% neutralization) against all of the isolates. The whole genome sequencing of culture adapted viral isolates and viral genome from patient oropharyngeal swab sample suggested that repetitive passaging of SARS-CoV2 virus in Vero-E6 cells did not lead to emergence of many mutations during the adaptation in cell culture. Phylogenetic analyses revealed that the five isolates clustered to respective clades. The major goal was to isolate and adapt SARS-CoV-2 viruses in in-vitro cell culture with minimal modification to facilitate research activities involved in understanding the molecular virology, host-virus interactions, application of these strains for drug discovery and animal challenge models development which eventually will contribute towards the development of effective and reliable therapeutics.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , COVID-19 , Carcinoma, Hepatocellular
6.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1149233.v1

ABSTRACT

Background The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is a major global health concern. This virus infects the upper respiratory tract and causes pneumonia-like symptoms. So far, few studies have shown alterations in nasopharyngeal (NP) microbial diversity, enrichment of opportunistic pathogens and their role in co-infections during respiratory infections. Therefore, we hypothesized that microbial diversity changes, with increase in the population of opportunistic pathogens, during SARS-CoV2 infection in the nasopharynx which may be involved in co-infection in COVID-19 patients. Methods  The 16S rRNA variable regions, V1-V9, of NP samples of control and COVID-19 (symptomatic and asymptomatic) patients were sequenced using the Oxford Nanopore™ technology. Comprehensive bioinformatics analysis for determining alpha/beta diversities, non-metric multidimensional scaling, correlation studies, canonical correspondence analysis, linear discriminate analysis, and dysbiosis index were used to analyze the control and COVID-19-specific NP microbiomes. Results We observed significant dysbiosis in COVID-19 NP microbiome with increase in abundance of opportunistic pathogens at genus and species levels in asymptomatic/symptomatic patients. The significant abundance of Mycobacteria spp. and Mycoplasma spp. in symptomatic patients suggest their association and role in co-infections in COVID-19 patients. Furthermore, we found strong correlation of enrichment of Mycobacteria and Mycoplasma with the occurrences of chest pain and fever in symptomatic COVID-19 patients. Conclusion This is the first study from India to show the abundance of Mycobacteria and Mycoplasma opportunistic pathogens in non-hospitalized COVID-19 patients and their relationship with symptoms, indicating the possibility of co-infections.


Subject(s)
COVID-19
7.
Research and Practice in Thrombosis and Haemostasis ; 5(SUPPL 2), 2021.
Article in English | EMBASE | ID: covidwho-1509183

ABSTRACT

Background: Increasing evidence suggests that endothelial activation and dysfunction contribute to COVID-19 pathogenesis by altering vessel integrity, promoting pro-coagulative and inflammatory state. Aims: 1. Investigate changes in coagulation, inflammation and endothelium associated with the progression and severity of COVID-19, as well as their correlation to survival and/or occurrence of venous thromboembolic events (VTE). 2. Explore potential new biomarkers to predict COVID-19 severity. Methods: Samples were collected from COVID-19 patients after appropriate consent. Disease severity was assessed with WHO ordinal scale on day of sampling. In addition to routine haematology, biochemistry and coagulation analysis, additional analysis spanning coagulation, endothelium, platelet, inflammatory biomarkers by conventional assays and multiplex immuno-assays were undertaken. Results: Participants included 151 COVID-19 patients aged 18 years and greater, 16 healthy volunteers and 9 non-COVID-19 ICUcontrols. COVID-19 patients were categorised in 7 groups based on severity and time from symptom onset and the data also provides mortality and VTE rates (Table 1). The biomarker profile of hospitalised COVID-19 patients demonstrated an increase in plasma levels of cytokines, inflammatory, soluble endothelial cell markers and markers of coagulation activation when compared to the ambulatory group (Figure 1). Significantly higher levels of inflammatory markers (CRP, WBC, fibrinogen, serum amyloid P, alpha 1 acid glycoprotein) were observed in patients with VTE and in the non-survivors group. Interestingly, the same trend was seen for coagulation (FVIII, VWF) and fibrinolysis markers (D-dimer, TFPI, t-PA) with higher levels in the VTE and non-survivors group. In addition, higher plasma levels of endothelial markers (ICAM-1, angiopoietin, TIE-2, LYVE-1, syndecan) were observed in severe COVID-19 when compared to non-COVID-19 ICU-controls. (Figure Presented) Conclusions: Our study provides evidence of a strong, global inflammatory response in COVID-19 patients. The elevation of circulating markers suggests significant endothelial cell activation/dysfunction and a possible cause for the pro-coagulant phenotype observed in these patients.

8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.10.21266147

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is a major global health concern. This virus infects the upper respiratory tract and causes pneumonia-like symptoms. So far, few studies have shown that respiratory infections alter nasopharyngeal (NP) microbiome diversity and enrich opportunistic pathogens. In this study, we have sequenced the 16S rRNA variable regions, V1 through V9, extracted from NP samples of control and COVID-19 (symptomatic and asymptomatic) participants using the Oxford Nanopore technology. Comprehensive bioinformatics analysis investigating the alpha/beta diversities, non-metric multidimensional scaling, correlation studies, canonical correspondence analysis, linear discriminate analysis, and dysbiosis index analysis revealed control and COVID-19-specific NP microbiomes. We observed significant dysbiosis in COVID-19 NP microbiome with abundance of opportunistic pathogens such as Cutibacterium, Corynebacterium, Oerskovia, and Cellulomonas in asymptomatic patients, and of Streptomyces and Mycobacteriaceae family in symptomatic patients. Furthermore, we observed sharp rise in enrichment of opportunistic pathogens in symptomatic patients, with abundance of Mycobacteria and Mycoplasma, which strongly correlated with the occurrences of chest pain and fever. Our findings contribute novel insights regarding emergence of opportunistic pathogens in COVID-19 patients and their relationship with symptoms, suggesting their potential role in coinfections.


Subject(s)
Infections , Pneumonia , Chest Pain , Fever , Dysbiosis , Respiratory Tract Infections , COVID-19 , Respiratory Insufficiency
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.21.21257211

ABSTRACT

Background: The current global pandemic of Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 led to the investigation with clinical, biochemical, immunological and genomic information of the patients to understand the pathophysiology of this viral infection. Methods: Samples were collected from six asymptomatic and six symptomatic SARS-CoV-2 confirmed hospitalized patients in Bhubaneswar, Odisha, India. Clinical details, biochemical parameters, treatment regime were collected from hospital, viral load was determined by RT-PCR, levels of cytokines and circulating antibodies in plasma were assessed by Bioplex and isotyping respectively. In addition, the whole genome sequencing of viral strains and mutational analysis were carried out. Findings Analysis of the biochemical parameters highlighted the increased levels of C-Reactive protein (CRP), lactate dehydrogenase (LDH), serum SGPT, serum SGOT and ferritin in symptomatic patients indicating that patients with higher levels of few biochemical parameters might experience severe pathophysiological complications after SARS-CoV-2 infection. This was also observed that symptomatic patients were mostly with one or more comorbidities, especially diabetes (66.6%). Surprisingly the virological estimation revealed that there was no significant difference in viral load of oropharyngeal (OP) samples between the two groups. This suggests that the viral load in OP sample does not correlate with disease severity and both asymptomatic and symptomatic patients are equally capable of transmitting the virus. Whereas, viral load was higher in plasma and serum samples of symptomatic patients suggesting that the development of clinical complications is mostly associated to high viral load in plasma and serum. This also demonstrated that the patients with high viral load in plasma and serum samples were found to develop sufficient amounts of antibodies (IgG, IgM and IgA). Interestingly, the levels of 7 cytokines (IL-6, IL-1@, IP-10, IL-8, IL-10, IFN-@2, IL-15) were found to be highly elevated in symptomatic patients, while three cytokines (soluble CD40L, GRO and MDC) were remarkably higher in asymptomatic patients. Therefore, this data suggest that cytokines and chemokines may serve as predictive indicator of SARS-CoV-2 infection and contribute to understand the pathogenesis of COVID-19. The whole genome sequence analysis revealed that the current isolates were clustered with 19B, 20A and 20B clades, however acquired 11 additional changes in Orf1ab, spike, Orf3a, Orf8 and nucleocapsid proteins. The data also confirmed that the D614G mutation in spike protein is mostly linked with severe SARS-CoV-2 infection as two patients with this mutation passes away. Interpretation This is the first comprehensive study of SARS CoV-2 patients from India. This will contribute to a better understanding of the pathophysiology of SARS-CoV-2 infection and advance in the implementation of effective disease control strategies.


Subject(s)
Diabetes Mellitus , Severe Acute Respiratory Syndrome , COVID-19
10.
Front Microbiol ; 11: 594928, 2020.
Article in English | MEDLINE | ID: covidwho-972819

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, has emerged as a global pandemic worldwide. In this study, we used ARTIC primers-based amplicon sequencing to profile 225 SARS-CoV-2 genomes from India. Phylogenetic analysis of 202 high-quality assemblies identified the presence of all the five reported clades 19A, 19B, 20A, 20B, and 20C in the population. The analyses revealed Europe and Southeast Asia as two major routes for introduction of the disease in India followed by local transmission. Interestingly, the19B clade was found to be more prevalent in our sequenced genomes (17%) compared to other genomes reported so far from India. Haplotype network analysis showed evolution of 19A and 19B clades in parallel from predominantly Gujarat state in India, suggesting it to be one of the major routes of disease transmission in India during the months of March and April, whereas 20B and 20C appeared to evolve from 20A. At the same time, 20A and 20B clades depicted prevalence of four common mutations 241 C > T in 5' UTR, P4715L, F942F along with D614G in the Spike protein. D614G mutation has been reported to increase virus shedding and infectivity. Our molecular modeling and docking analysis identified that D614G mutation resulted in enhanced affinity of Spike S1-S2 hinge region with TMPRSS2 protease, possibly the reason for increased shedding of S1 domain in G614 as compared to D614. Moreover, we also observed an increased concordance of G614 mutation with the viral load, as evident from decreased Ct value of Spike and the ORF1ab gene.

11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.23.217430

ABSTRACT

COVID-19 that emerged as a global pandemic is caused by SARS-CoV-2 virus. The virus genome analysis during disease spread reveals about its evolution and transmission. We did whole genome sequencing of 225 clinical strains from the state of Odisha in eastern India using ARTIC protocol-based amplicon sequencing. Phylogenetic analysis identified the presence of all five reported clades 19A, 19B, 20A, 20B and 20C in the population. The analyses revealed two major routes for the introduction of the disease in India i.e. Europe and South-east Asia followed by local transmission. Interestingly, 19B clade was found to be much more prevalent in our sequenced genomes (17%) as compared to other genomes reported so far from India. The haplogroup analysis for clades showed evolution of 19A and 19B in parallel whereas the 20B and 20C appeared to evolve from 20A. Majority of the 19A and 19B clades were present in cases that migrated from Gujarat state in India suggesting it to be one of the major initial points of disease transmission in India during month of March and April. We found that with the time 20A and 20B clades evolved drastically that originated from central Europe. At the same time, it has been observed that 20A and 20B clades depicted selection of four common mutations i.e. 241 C>T (5UTR), P323L in RdRP, F942F in NSP3 and D614G in the spike protein. We found an increase in the concordance of G614 mutation evolution with the viral load in clinical samples as evident from decreased Ct value of spike and Orf1ab gene in qPCR. Molecular modelling and docking analysis identified that D614G mutation enhanced interaction of spike with TMPRSS2 protease, which could impact the shedding of S1 domain and infectivity of the virus in host cells.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL